https://www.emerald.com/insight/0002-1466.htm

The current issue and full text archive of this journal is available on Emerald Insight at:

Using a regional climate model to
develop index-based drought
insurance for sovereign disaster
risk transfer
Roman Hohl

International Finance Corporation, World Bank Group, Washington,
District of Columbia, USA and
Tropical Marine Science Institute, National University of Singapore,
Singapore, Singapore
Ze Jiang
Tropical Marine Science Institute, National University of Singapore,
Singapore, Singapore
Minh Tue Vu
Glenn Department of Civil Engineering, Clemson University, Clemson,
South Carolina, USA, and

Srivatsan Vijayaraghavan and Shie-Yui Liong
Tropical Marine Science Institute, National University of Singapore,
Singapore, Singapore

Abstract

Purpose — Examine the usability of rainfall and temperature outputs of a regional climate model (RCM) and
meteorological drought indices to develop a macro-level risk transfer product to compensate the government of
Central Java, Indonesia, for drought-related disaster payments to rice farmers.
Design/methodology/approach — Based on 0.5° gridded rainfall and temperature data (1960-2015) and
projections of the WRF-RCM (2016-2040), the Standardized Precipitation Index (SPI) and the Standardized
Precipitation Evapotranspiration Index (SPEI) are calculated for Central Java over different time spans. The
drought indices are correlated to annual and seasonal rice production, based on which a weather index
insurance structure is developed.

Findings — The six-month SPI correlates best with the wet season rice production, which generates most
output in Central Java. The SPI time series reveals that drought severity increases in future years (2016-2040)
and leads to higher payouts from the weather index structure compared to the historical period (1960—2015).
Practical implications — The developed methodology in using SPI for historical and projected periods
allows the development of weather index insurance in other regions which have a clear link between rainfall
deficit and agricultural production volatility.

Originality/value — Meteorological drought indices are a viable alternative for weather index insurance,
which is usually based on rainfall amounts. RCM outputs provide valuable insights into future climate
variability and drought risk and prolong the time series, which should result in more robust weather index
insurance products.

Keywords Drought risk mitigation, Climate change, Regional climate model, Standardized precipitation
index, Weather index insurance, Sovereign disaster risk transfer
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Introduction

Catastrophic weather events are felt most at farm level but can have severe financial
consequences for the agricultural supply chain including agricultural banks, input suppliers,
processors, cooperatives and logistic companies and for government agencies that provide
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ad-hoc disaster relief and administrate redevelopment budgets. The lack of opportunities to
transfer weather risks in the agricultural supply chain to insurance and capital markets can
severely limit the evolution of efficient agricultural credit markets and value chains,
undermine future investments and hinder efforts for rural poor in developing countries to
emerge from poverty (Miranda and Farrin, 2012).

In developed countries, conventional indemnity-based crop insurance is widely available
with well-known structural issues that include moral hazard (Smith and Goodwin, 1996),
adverse selection (Just et al, 1999) and systemic risk (Miranda and Glauber, 1997). Further,
indemnity-based crop insurance causes high costs related to risk assessment at farm level,
administration and loss adjustment, while often, substantial government subsidies are
required to make insurance affordable. In developing countries that are often characterized
by small farm sizes, index-based crop insurance, and particularly weather index insurance,
has been promoted as an efficient risk transfer instrument. While index-based insurance
largely mitigates moral hazard and adverse selection (Berg and Schmitz, 2008) and reduces
costs as indemnities are directly settled on the indices (Barnett and Mahul, 2007), it induces
inherent basis risk, which results in a failure of index insurance to provide indemnities that
perfectly match the losses of the insured (Doherty and Richter, 2002).

The main categories of indices used in agricultural insurance can be divided into (Hohl,
2019) (1) weather indices where climate data are used to define insurance payouts mainly
rainfall and temperature as, for example, used in India (Clarke et al, 2012) and parts of Africa
(e.g. Tadesse et al,, 2015); (2) yield indices where regional crop yields define payouts relative to
expected yields as, for example, used in the United States (Ramsey and Goodwin, 2019) and
India (Bhushan and Kumar, 2017); (3) satellite indices that are based on the Normalized
Difference Vegetation Index (NDVI, e.g. Turvey and Mclaurin, 2012; Bokusheva et al, 2016) and
f-covers (Roumiguié et al, 2015) for drought-related reductions in forage quantity and increased
livestock mortality as used in Mexico and Uruguay (World Bank, 2013) and Kenya (Jensen et al,
2015); (4) climate indices as used in Peru for drought occurrences related to sea surface
temperature anomalies during El Nino years (Mortensen and Block, 2018); and (5) model-driven
indices including the Water Requirement Satisfaction Index (WRSI) that reflects drought risk
as used in Africa (African Risk Capacity, 2019). Additionally, outputs of mechanistic crop
models have been explored for crop insurance purposes (e.g. Castaneda-Vera et al, 2015).

Despite significant efforts to develop index-based crop insurance (especially weather
index insurance) at micro-level in developing countries, uptake rates remain low (e.g. Dercon
et al., 2014), except where heavy premium subsidies are available or because governments
pressure insurers to develop and offer mandatory products for lower-income groups
(Miranda and Gonzalez-Vega, 2011). Constraints of weather index insurance in developing
countries include the basis risk at micro-level (Weber ef al, 2015), difficulties to access
weather and agricultural production data, inconsistencies in the data along with the
affordability of insurance by farmers and a general unfamiliarity and mistrusts of producers
towards insurance. Further, short time series of climate data on which the indices are
developed can lead to an underestimation of risk, particularly when large and extreme losses
have not been experienced historically. As a result of the shortcoming of index-based
insurance at micro-level, research and project development is increasingly focussing on meso-
and macro-level risk transfer in supporting financial institutions and governments to provide
solutions to the rural poor which, in turn, can benefit from insurance products at aggregated
levels (Miranda and Gonzalez-Vega, 2011).

In Indonesia, the agricultural sector is highly exposed to natural disasters and is
dominated by smallholders that mainly produce rice and corn as staples. While recently
efforts have been undertaken to establish ex ante risk financing including crop insurance
(Pasaribu, 2010), provincial governments face an increasing financial burden to support
farmers affected by natural disasters and to import additional agricultural commodities to



maintain food security. Although well-developed agricultural markets can largely substitute
government disaster payment schemes, index insurance offers provincial governments
immediate protection against large volatilities in budgets for disaster payments to
agricultural producers affected by natural disasters.

This study explores the development of a macro-level index insurance product that
indemnifies the government of Central Java, Indonesia, for disaster payments to rice farmers
following severe droughts. Based on historical climate data (1960-2015) and projections from
a regional climate model (RCM) (2016-2040), two widely used meteorological drought indices
are computed to obtain a time series of 81 years (1960—2040).

Macro-level index insurance

To overcome the obstacles in farm-based crop insurance in developing countries, some
thoughts have been given how to transfer weather risk at meso- and macro-level
(Binswanger-Mkhize, 2012; Miranda and Farrin, 2012) following the concept of pooling
risks for risk aggregators. While meso-level insurance focusses on risk transfer with
agricultural intermediaries in the supply chain, macro-level insurance targets weather risks
of governments and non-governmental organizations that administrate disaster relief funds
and procure additional agricultural commodities from international markets after the impact
of natural catastrophes. Macro-level insurance supports governments in a more cost-effective
use of resources, improved planning and better preparedness for catastrophes and lower
reliance on international donors for ad-hoc assistance in the aftermath of catastrophes (Hess
et al., 2006), stability in disaster and emergency food procurement budgets and more effective
risk layering in the agricultural production system. Unlike micro-level insurance, macro-level
insurance is used by a single government entity and can use complex structures that capture
the relationship between weather variables and agricultural losses in an optional way while
reducing basis risk. Additionally, macro-level insurance can make use of existing distribution
channels such as disaster payment schemes to reach the beneficiaries in the most efficient
way. However, macro-level structures with a single national index can fail to capture regional
disasters and require a contingency plan to assure that insurance proceeds are distributed
timely to affected farmers and to prevent misuses of indemnities (Miranda and Farrin, 2012).
Miranda and Farrin (2012) suggest that macro-level products are more likely to succeed if
they are implemented in collaboration with international donor groups and relief agencies as
it prevents a lower risk that donor support is reduced.

Governments have increasingly been using macro-level risk transfer products to cover
public infrastructure from earthquakes and hurricanes through insurance-linked securities
such as catastrophe bonds (Linnerooth-Bayer and Hochrainer-Stigler, 2015). The use of a
catastrophe bond for agricultural risks has theoretically been discussed for a state-wide
reduction in cotton yields in Georgia, USA (Vedenov et al.,, 2006) and for drought risk in Kenya
(Sun et al., 2015). Despite its potential, only a few macro-level insurance structures have been
implemented for sovereign risks in agriculture. In Mexico, the federal government covers
local governments through FONDEN for reconstruction of local infrastructure, the
implementation of temporary employment programmes and direct payments of farmers
for income losses following natural disasters (Skees et al, 2002). One of the first index-based
sovereign risk transfers occurred in Ethiopia in 2006, through a cumulative rainfall index that
provided insurance payouts to the government in case of drought losses to wheat, millet,
cowpea and maize with over 67,000 households benefiting from timely payouts (Barrett et al,
2009). In 2008, the government of Malawi entered into a derivative contract that was based on
the Malawi Maize Index and consisted of WRSI computations, to obtain, in case of a severe
drought, immediate funds to procure additional maize from international markets (Syroka,
and Nucifora, 2010). In 2016, the government of the Chinese province of Heilongjiang started
buying index-based reinsurance to cover income volatility of poor rural households in 28
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counties from flood, excessive rainfall, drought and low temperature based on weather and
satellite data (Swiss Re, 2016).

With climatological disasters becoming possibly more severe under climate change
scenarios and with governments implementing more comprehensive disaster risk financing
frameworks, the demand for macro-level risk transfer of agricultural risks from the public
sector is likely to increase further.

Regional and global climate models

Essentially, Global Climate Models (GCM) and Earth System Models (ESM) are the most
advanced tools that are currently available for modelling the response of the global climate
system to increasing radiative forcing at large temporal and spatial scales. GCMs and ESMs
are mathematical representations of the climate system on a three-dimensional numerical
grid with equations relating physical processes in the atmosphere, ocean, cryosphere and
land surface. These models have been applied for various studies, ranging from simulations
of present-day climate to the study of paleoclimates and possible future climate conditions
under the effect of variations in global forcing (Giorgi, 1995). Climate data from GCMs are of
coarse spatial resolution (typically 100-200 km) and a downscaling procedure is required to
obtain data at a finer resolution (5-10 km) (IPCC, 2007). The most common downscaling
approaches rely on either statistical/empirical or dynamical methods. The dynamical method
employs a higher-resolution regional limited area model, known as a Regional Climate Model
(RCM), that is driven by GCM outputs.

Drought impacts on rice production in Indonesia

Indonesia is one of the main agricultural producers globally and largely relies on domestic
food staples (especially rice) for its growing population. In recent years, agriculture has been
contributing 13.5% to the gross domestic product while employing 34% of the labour force
(OECD, 2017). Several studies have found that the Indonesian rice production is strongly
influenced by annual and interannual variations of rainfall driven by the El Nino Southern
Oscillation (ENSO) and the Austral-Asia Monsoon (Amien et al., 1996). Liyantono et al. (2012)
found that in East Java, the main factor of agricultural production sustainability is rainfall
variability that is caused by the ENSO with El Nino years having below-average rainfall
(often resulting in drought) and La Nina years with above-average rainfall (flooding). Various
studies have shown that ENSO-related droughts have significant consequences for
agricultural output, rural income, staple food prices and famines in Indonesia (e.g. Naylor
etal.,2007). The occurrence of an EI Nino typically leads to a delay in the wet season of two or
three months and consequently, a delay of rice harvests (Amien ef al,, 1996). On average, the
potential impacts of drought due to weak and moderate El Nio occurrences reduced rice
yields in Indonesia by 40% (Surmaini ef @/, 2015). Naylor ef al. (2001) showed that in Java, the
strong 1997/98 El Nino caused a reduction in rice areas of 700,000 ha and a production loss of
3.2m tons, which is equivalent to one-fourth of the total rice volume that was annually traded
in international markets (1971-1998).

Under climate change conditions, Indonesia is likely to experience temperature increases
of 0.8°-1.1°C by 2030 with a high likelihood for the rainy season to end earlier and its length to
shorten (IFPRI, 2011; IPCC, 2013). Climate change can affect rice production in Indonesia in
various ways including: (1) each 1°C temperature increase lowers rice quality and can lead to
yield losses of 1.3m metric tons or 10-25% of the total production; (2) a 30-day delay in the
onset of the wet season might decrease rice yields by 6.5-11% in West/Central Java and East
Java/Bali and may ultimately prevent farmers from planting two consequent rice crops; and
(3) a 60-cm sea level rise can severely reduce rice yields in coastal areas (MER, 2015).
Climatological disasters, including E1 Nino-related droughts, accounted for more than 40% of
all disbursements from the government’s reserve funds between 2010 and 2016 (BNPB, 2017).



In Indonesia, several measures have been implemented to reduce drought losses and
include: (1) drought detection and monitoring through meteorological drought indices and
satellite-based vegetation health indices; (2) establishment of early warning systems to more
reliably predict the onset of El Nino events to manage food security policies; and (3) changing
the paradigm of sovereign disaster support from post-disaster funding and the reliance on
emergency contributions from the international community towards ex ante disaster risk
financing. As part of risk financing, the government started piloting indemnity-based rice
insurance in 2010, covering flood, drought and certain pests and diseases during the wet and
dry seasons (Pasaribu, 2010). Despite the government subsidizing 80% of the rice insurance
premium, the insurance penetration remains low with considerable costs to distribute
insurance to smallholders. Most farmers rely on ad-hoc disaster payments while the increase
of government disaster spending for climate disasters, of which a majority is provided to the
agricultural sector, has created concerns about budget stability for many provincial
governments and increased the interest for index-based sovereign disaster insurance against
drought.

Data

The development of weather index insurance requires a consistent time series of weather and
loss proxies such as crop yield data that allows the construction of robust and reliable indices.
For this study, the development of a meteorological drought index that compensates the
government of Central Java for losses of severe droughts requires historical rainfall and
temperature data at a reasonable temporal and spatial resolution, projected rainfall and
temperature data from an RCM and historical rice production statistics and farm gate rice
prices.

Agricultural data

For the province of Central Java, annual rice yield, harvested area and production are
available from the Ministry of Agriculture (1986-2015). Additionally, seasonal rice yield,
harvested area and production are obtained from the Central Java government (2006—2015)
and include the following seasons: (1) a wet season (planting in January and harvest in April),
(2) dry season 1 (May—August) and (3) dry season 2 (September—December). A brief analysis
of irrigation intensity levels (FAO, 2016) shows that rice production areas are mainly
irrigated along the coast and allow therefore the planting for three seasons and are rain-fed in
the upper lands where rice is grown in two seasons.

Seasonal and annual rice production shows an increase overtime, which is driven by both
larger areas harvested and higher average rice yields. However, the short time series,
particularly for seasonal production (2006-2015), does not allow a meaningful trend analysis.
As disaster payments to farmers affected by natural disasters are based on rice production
deficits (rather than yield reduction), seasonal rice production (1986—2015) is chosen for this
study as a loss proxy to validate the suitability of meteorological drought indices for weather
index insurance. Farm gate prices for wet paddy in Central Java, which are the prices that
farmers receive in the domestic market, are available from the Central Java government as
annual averages. For this study, the 2016 farm gate price for INR 4,000/kg (US$300/ton)
is used.

Historical climate data

As access to climate data from a sufficiently large network of weather stations is difficult in
Indonesia and due to the requirement for gridded climate data to match the RCM outputs,
different open-source gridded climate data sets are first investigated for the province of
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Central Java. The gridded climate data from the Climatic Research Unit (CRU, series 3.24.01,
Harris et al, 2014) is found to be most suitable for this study and includes monthly rainfall and
temperature at a 0.5° spatial resolution (1960-2015). CRU uses weather station data from
different sources including the Global Historical Climatology Network (Lawrimore et al,
2011), which is an integrated database of climate summaries from land surface stations
across the globe and CLIMAT (Jones and Moberg, 2003).

CRU data have been used for climatological analyses in Indonesia (e.g. D’Arrigo and
Smerdon, 2008), and a comparison of the CRU data set with Indonesian weather station
records shows a good agreement, particularly for Sumatera and Java (Supari and
Sopaheluwakan, 2016). Further, CRU data have been validated over Southeast Asia and
been used as inputs into RCMs (e.g. Ratna et @/, 2017) and in studies of climate change and the
occurrence of El Nino events in Southeast Asia (e.g. Thirumalai ef al., 2017).

Regional climate model data
This study uses the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008),
which is one of the most widely applied climate models, with numerous applications in
Southeast Asia (e.g. Chotamonsak et al., 2011; Raghavan et al., 2016) including climate change
studies in agriculture (e.g. Jiang et al, 2019). The physics configurations of the WRF model
used in this study are based on an earlier investigation by the Tropical Marine Science
Institute of the National University of Singapore (Raghavan et al., 2016) and include rainfall
and temperature simulations at a 20-km spatial resolution for Java, Indonesia. The WRF
model was initially driven by the global reanalyses ERA-Interim data (Berrisford et al.,, 2011)
for model performance assessments. Subsequently, the model is driven by three global
climate models that are MPI ESM-MR, CSIRO-ACCESS1.3 and MRI-MIROC5 from the
Coupled Model Intercomparison Project Phase 5 (Taylor et al., 2012) that formed part of the
downscaling exercise to assess changes in future climates at regional scales.

For this study, the baseline historical climate is set for 1986-2005 while the future climate
is based on the Representative Concentration Pathways (RCP) scenario 8.5 [1] for 2016—2040.
The RCP scenarios include a set of emission scenarios from the Intergovernmental Panel on
Climate Change (IPCC) and are based on possible net radiative forcing by the end of the
century under the influence of anthropogenic climate change [2].

Methods

Methods applied in this study involve (1) establishing a reliable meteorological drought index
that has low data requirements, reflecting drought risk for rice production and can be
computed from historical (1960-2015, historical period) and projected gridded climate data
(20162040, projected period); (2) developing a weather index insurance structure that is
based on the meteorological drought index that correlates best to annual or seasonal rice
production shortfall; and (3) comparing payouts of the weather index with rice production
shortfalls to determine the suitability of the weather index structure for sovereign disaster
risk transfer.

Drought indices

Alarge variety of indices are used for operational and research applications to detect, monitor
and model droughts and include (1) meteorological indices such as the Standardized
Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI), (2) satellite-derived
vegetation health indices including the NDVI, the Enhanced Vegetation Index (EVI) and the
Vegetation Condition Index (VCI) and (3) combinations of different indices (Zargar
et al, 2011).



The SPI (McKee et al., 1993) is one of the most accepted and widely used meteorological
drought indices and has been recommended by the World Meteorological Organization
(WMO) as one of the most suitable indices for drought monitoring and climate risk
management of different time spans (WMO, 2009). Conceptually, the SPI is equivalent to the
Z-Score in statistics and is formulated as (Patel ef al, 2007)

Splj~ 0 1Y
ol

where SPIj is the SPI of the sth month at the jth timescale, X7 is the total rainfall for the ith
month and the jth timescale, yzj and otj are long-term mean and standard deviation associated
with the sth month and the sth timescale. The method to compute SPI is described in detail in
Guttman (1999) and is here briefly summarized through (1) preparing a time series for a
continuous period of historical precipitation records (ideally over 30 years) and a desired time
interval (e.g. one month); (2) fitting a Gamma function to the historical records to define the
relationship of probability to precipitation; and (3) calculating the probability of any observed
precipitation with an estimate of the inverse normal distribution to obtain the precipitation
deviation for a normally distributed probability density with a mean of zero and a standard
deviation of unity. The scale of the SPI ranges from >+-2 (extremely wet) to < —2 (extremely
dry) with values between —0.99 and +0.99 defined as near normal. A meteorological drought
is typically defined with an SPI being continuously below a value of —1.

Although precipitation is often the main variable that determines the onset, duration,
intensity and end of a drought (e.g. Heim, 2002), a shortcoming of SPI is that it only uses
rainfall and ignores other variables such as temperature, evapotranspiration, wind speed and
soil water holding capacity, which can influence the severity and duration of a drought. Asa
response, the Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano
et al, 2010) has been developed and while it is based on the SPI procedure, it uses the
difference between potential evapotranspiration (PET) and precipitation. PET is computed
through a simplistic water balance equation using surface temperature, air humidity, soil
incoming radiation, water vapor pressure and ground-atmosphere latent and sensible heat
fluxes (Allen et al, 1998). The scale of the SPEI for rainfall deficit is the same as for SPL

The use of meteorological indices including the SPI has been explored for crop insurance
by Leblois and Quirion (2013) and for weather index insurance by Fischer et al. (2012). In
Argentina, a pilot insurance programme was based on six-month SPIs calculated from
weather station data to compensate dairy farmers for reduced milk production in case of
drought occurrence (SPI < —2) and/or excessive rainfall events (SPI >+2) (Mercosur Group,
2016). In Indonesia, the Meteorological, Climatological and Geophysical Agency (BMKG)
operationally computes SPI to monitor and quantify drought risk [3] for the national and
province governments. SPI has been used in Southeast Asia to quantify drought in GCM
applications (e.g. Vu et al, 2018).

Due to their wide use, simplicity and high acceptance, SPI and SPEI are explored as
meteorological drought indices in this study. First, SPIs and SPEIs are computed from the
monthly CRU gridded precipitation and temperature data (1960-2015, 0.5° spatial resolution)
for all 23 grid cells that cover the province of Central Java and are subsequently totalled over
all grids to obtain one monthly value for the province. To quantify the relationship between
the SPIs and SPEIs and seasonal as well as annual rice production shortfalls, the indices are
aggregated over different months that cover the rice growing periods including the wet
season (January—April), dry season 1 (May—August), dry season 2 (September—December)
and the annual period (January—December). While indices of shorter durations show more
seasonal rainfall trends and reveal patterns of seasonal droughts, annual indices reflect more
long-term precipitation deficits and cycles. For the projected rainfall and temperature data
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from the WRF-RCM, the six hourly data are first aggregated to monthly timescales, after
which the same procedure is used to calculate SPI and SPEI values as has been applied for the
historical gridded climate data. As a result, different SPI and SPEI time series are obtained for
the historical (1960-2015) and the projected period (2016-2040).

Weather index insurance
For the purpose of insurance, an elementary weather index contact pays an indemnity
according to the following schedule (Vedenov and Barnett, 2004)

0,ifi > 1"
=1
=

1,ifi <u°

f(ilx,i7,2) = xX it <i<i

The elementary contract pays out when the index i falls below the trigger (also called strike) i
with the indemnity proportional to the difference between the index and the trigger. The
maximum payout occurs when the index falls below the limit i, whereas 0 < A < 1. Different
methods are available to determine the trigger and generally include (1) realizations of a
weather parameter at a certain quantile (e.g. 70%) from the historical climate data or through
modelled distributions (El Benni et al., 2016), (2) a given standard deviation (e.g. 50%) above/
below the mean weather variable from the historical climate data or (3) determined through
polynomial regressions in function of the crop yield (Chen et al, 2017). In practice, several
iterations take place from the first setting of the trigger to the final definition and are often
driven by the resulting premium amount and the affordability of the insurance buyer.
Typically, the sum insured is calculated as either the product of average or projected yield
and commodity prices or the product of production cost (includes input supplies, labour and
equipment) and commodity prices.

Depending on the weather index and the length of the underlying time series, insurance
pricing is typically based on (1) the Expected Loss Calculation (ELC) where a probability
density function is applied to the de-trended residuals of the underlying weather variables
which forms the basis of risk rates or (2) the Historical Burn Rate (HBR) where risk rates are
directly calculated from the historical climate data. The HBR method is more commonly
applied and establishes a burning cost that results from aggregated losses and corresponding
exposure over a given time and can include prior adjustments for deductible, franchises and
limits, development factors for incurred but not reported losses and/or large losses and
catastrophe loadings (Parodi, 2015). While relatively simple in its application, HBR has
several shortcomings for weather index insurance in that (1) long and consistent weather data
are required, (2) large and catastrophe type of losses are only considered as far as they are
contained in the data and (3) the development of trends in the frequency and severity of losses
cannot specifically be addressed.

In this study, the parameters of the weather index structure, shown in the example of wet
season rice and a six-month SPI (SPI6), are determined as follows:

(1) Sum insured: based on a farm gate rice price of US$300/ton, the cost of production is
estimated at US$100/ton and represents about a third of the farm gate value. The total
sum insured is obtained by multiplying the 2015 wet season production (5.2m tons)
with the production costs (US$100/ton) and results in US$520.16m.

(2) Trigger: the average wet season rice production reached 4.533m tons (2006-2015)
with a standard deviation of 537,000 tons (12%). The trigger, as the threshold below
which a payout occurs, is set to be the double of the standard deviation or



approximately 1m tons. The wet season rice production statistics (2006-2015) reveal
the largest shortfalls with 880,000 tons (2014) with a corresponding SPI6 of —5.63 and
865,000 tons (2007) with an SPI6 of —5.53. To cover these two events, the trigger is set
as an SPI6 of —5.

(3) Limit: the lowest SPI6 in Central Java from the historical climate data (1960-2015)
occurred in 1994 (SPI6 —9.95), followed by 1976 (—9.89) and 1982 (—9.25), while the
severe drought years in Indonesia in 1997 and 2014 produced an SPI6 of —8.15 and
—5.63, respectively. The lowest SPI6 of the projected period from the RCM is —13.32
(2028) and 1is significantly higher than in the historical period. To allow for
compensation in exceptionally severe drought events, the limit is established at an
SPI6 of —15.

(4) Maximum payout: using the assumed maximum shortfall of 1m tons for the wet
season at an indemnity of US$100/ton, the maximum payout is set at US$100m.

(5) Payout function: for simplicity, the payout modality is defined to be linear with a
payout of US$10m per 1 SPI6 and is obtained by dividing the maximum payout
(US$100m) by the difference of the limit (SPI6 —15) and the trigger (SPI6 -5).

Given the 81-year long time series (1960-2040) available for this study, the pricing of the
weather index relies on the HBR. The pure risk rate is computed in dividing the total payout
obtained by the HBR method by the sum of the maximum payouts over the same time.
Subsequently, the pure risk premium is obtained by multiplying the pure risk rate with the
total sum insured.

Results

The results of this study provide valuable insights into temporal and spatial rainfall
distributions in the province of Central Java, past drought occurrence and rice production
shortfalls as well as future drought risk. This study is one of the first to use RCM outputs and
to incorporate future drought risk into the development and pricing of weather index
insurance.

Drought indices and rice production shortfall

In the province of Central Java, most rice is produced during the wet season (47% of the
annual production), while dry season 1 contributes on average 38% and dry season 2 an
average of 15% of the annual rice production (2006-2015). While rice production in all three
seasons has been increasing since 2006, severe shortfalls occur in 2007 and 2014, which are
well-known drought years in Indonesia (Figure 1). The wet season and dry season 1
production shows higher volatility compared to dry season 2 (Figure 1). Seasonal rainfall
amounts (1986-2014) are unevenly distributed in that the wet season obtains on average 53%
of the annual rainfall while dry season 1 receives 13% and dry season 2 the remaining 34 % of
the annual rainfall (Figure 1). Wet season rainfall amounts correlate higher with dry season 2
rainfall (» = 0.33) than with precipitation of dry season 1 (» = 0.24), while it correlates most
with annual rainfall ( = 0.62). As the main aspect that leads to the onset of drought in Java is
a delay of the usual rainfall regime in the wet season (November—March), this leads to severe
rice production shortfalls.

Comparison of the drought indices
The SPI shows a good correspondence with SPEI for all investigated time spans of the
historical period. A correlation coefficient of 0.973 (p-value<0.05) is obtained between SPI6
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Figure 1.

Left: CRU seasonal
rainfall in Central Java
for three rice seasons,
1986-2014. Right:
Seasonal rice
production in Central
Java for three rice
seasons, 20062015

Figure 2.

Left: SPI6 and SPEI6 in
Central Java, 1960
2015. Right: SPI6,
SPI12 (left axis) and
annual precipitation
(right axis) in Central
Java, 1960-2015. Note
that negative values in
the SPIs reveal dry
conditions (deficit
rainfall) while positive
values show wet
conditions (excess
rainfall)

and SPEI6 (Figure 2) and 0.970 (p-value<0.05) between SPI12 and SPEI12. Both SPI and SPEI
reveal severe rainfall deficits in the historical period including the well-known drought years
of 1976, 1982, 1991, 1997, 2002 and 2014 (Figure 2). The droughts of 1991 and 1997 have also
been noticed in Sudibyakto ef al (2016) through an analysis of SPIs from rainfall data of 31
weather stations on Java island (1985-2004). Among others, Pratiwi ef al (2018) noted severe
droughts in Java in 1988, 1991, 1997 and 2015 and their relation to the occurrence of EI Nino.
Due to its simplicity and the higher familiarity of government entities in Indonesia with SPI
rather than SPEI, SPI is used in this study as the meteorological drought index.

Analyses of SPI6 and SPI12 for the historical period show a good correspondence with
annual precipitation amounts, particularly in years with drought occurrence (SPI < -5) and
excessive rainfall events (SPI >+5) (Figure 2). Correlation coefficients between SPI6 and the
corresponding rainfall reach 0.87 (p-value<0.05) and 0.46 (p-value<0.05) between SPI12 and
annual precipitation.

Drought severity increases in the projected period with the highest negative projected
SPI6 of —13.3 (2028) compared to the historical period with a maximum of SPI6 of —9.95
(1994) (Figure 3). While years of consecutive droughts have occurred in the past, for example,
1961-1964 (SPI6 of —7.7, —0.6, —7.3 and —0.9), future years of continuous drought are likely
to be more severe based on the RCM output, for example, 2027-2030 (SPI6 —7.9, —13.3, —=10.5
and —2.17) (Figure 3). The frequency of severe droughts is likely to decrease in the next 25
years (2016-2040) with four events with SPI6 <-5 (i.e. one such event every 6.3 years)
compared to the past 56 years of the historical period with one event of SPI6 <5 in 3.1 years.
Overall, the volatility, expressed as the coefficient of variation (CV) in the SPI6 time series,
significantly increases in the projected 25 years (CV of 74.0) compared to the last 25 years of
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the historical period (CV of 14.9) and reflects that meteorological droughts are likely to be
more severe. Positive projected SPIs that indicate excessive rainfall events are 1) comparable
in magnitude in the future climate (maximum SPI6 +18.3) with the historical period
(maximum SPI6 +17.4) and 2) slightly decrease in frequency with four events with SPI6 >+5
in the next 25 years (or one event in 6.25 years) compared to 13 events in the last 56 years (or
one event every 4.3 years) (Figure 3). The finding that drought severity increases in Central
Java agrees with the results of Pratiwi ef al (2018) where drought indices based on GCM-
derived SPIs (2020-2045) are compared to the base-line climate (1986-2017).

Comparison of SPI with vice production

The comparison between SPI12 and annual rice production generates a correlation coefficient
of 0.13 (Table 1), which is expected as rainfall is unevenly distributed over the year with the
wet season alone receiving on average 53% of the annual rainfall. SPI6 and wet season rice
production correlate with 0.71 (Table 1), which can be explained by the fact that the wet
season contributes on average 47% to the annual rice production in Central Java and SPI6
captures the main rainfall during the wet season. Rainfall deficits in 2007 (SPI6 —5.5) and 2014
(SPI6 —5.6) have resulted in a wet season rice production of 3.381m tons (2007) and 4.134m
tons (2014) and are below the average production of 4.533m tons (2006-2015). Only the wet
season rice production correlates significantly with SPI6, while the other seasons do not
strongly depend on rainfall as shown through low correlation coefficients with SPI6 and
SPI12 (Table 1). The dependence of the wet season rice production on rainfall indicates that
the irrigation scheme in the coastal areas of Central Java becomes inefficient in drought years
and must be the result of a lack of groundwater and surface run-off. The fact that wet season
rice (planting in January and harvest in April) is exposed to drought in Central Java has been
noticed in Surmaini ef al (2015), where a rice drought impact index that reveals the ratio of
drought-induced damaged area to the total planted area shows a high vulnerability to crop
damage by drought during March-May and June—August. The difference of the finding of

— CRU 1960-2015
- -WRF ECHAM 2016-2040 RCP8.5

SPI6

1970 1980 1990 2000 2010 2020 2030 2040

Correlation coefficient

Rice season SPI6 SPI12
Wet Season +0.717% +0.497
Dry Season 1 +0.170 —0.314
Dry Season 2 +0.173 -+0.185
All Seasons +0.158 +0.138

Note(s): “significant correlation (p-value<0.05)

Regional
climate model
for drought
Insurance

Figure 3.

SPI6 based on CRU
rainfall for the
historical period (solid
line, 1960-2015) and
SPI6 based on the
WRF-RCM (ECHAM
RCP8.5) for the
projected period
(dotted line, 2016-2040)

Table 1.

Correlation coefficients
between rice
production and SPI6
and SPI12 for Central
Java, Indonesia, for
three seasons (2006—
2015) and for all
seasons (1986-2015)




Figure 4.

SPI6 for the historical
(solid line, 1960-2015)
and the projected
period (dotted line,
2016-2040) with
payouts of the weather
index for the historical
period (black columns)
and the projected
period (grey columns)
for wet season rice
production in

Central Java

Surmaini et al. (2015) with this study is that drought is parametrized through rainfall deficit
(i.e. SPI) in this study and that it takes time for the rice crop to reveal the damage, which
Surmaini ef al. (2015) noticed at harvest times.

Weather index insurance

Based on the correlation analyses of SPI and SPEI and the three rice growing seasons, the
best suited weather index covers the wet season as it produces most rice and correlates best
with SPI6 and SPI12 (Table 1). The weather index for the wet season is defined through a total
sum insured of US$520.16m, a trigger of SPI6 <—5, a limit of SPI6 —15, a maximum payout of
US$100m and a linear payout function with a value of US$10m per SPI6.

The weather index generates a payout in 18 out of 56 years for the historical period
ranging from US$50,000 (1980, SPI6 —5.005) to US$49.5m (1994, SPI6 —9.950) with an annual
average payout of US$7.698m (Figure 4). For the projected period, indemnities occur in four
out of 25 years with a minimum of US$29.0m (2027, SPI6 —7.901), a maximum of US$83.3m
(2028, SPI6 —13.328) and a yearly average of US$8.199m (Figure 4). While the payout
frequency is likely to decrease in the future climate compared to the historical period
(Table 2), higher payouts, both in nominal value and in the annual average, are expected due
to the increasing drought severity (SPI6 <—5). The payout of the combined period (1960—
2040) amounts to US$636m with US$431m from the historical and US$205m from the
projected period (Table 2). The correlation coefficient between SPI6 values and payouts
reaches —0.71 for the historical period, —0.67 for the projected period and —0.68 for the
combined period (Table 2). The negative correlation coefficients reveal that the lower the SPI6
(i.e. the higher the rainfall deficit), the higher the monetary payout under the weather index.
The pure risk premium rate that is calculated through the HBR method is obtained as 1.48%
for the historical period, 1.58% for the projected period and 1.51% for the combined period,
equivalent to an annual risk premium of US$7.85m (Table 2).

As insurance covers future risk, but future risk is in most applications difficult to quantify,
insurance pricing typically relies on past losses and loss proxies that are standardized to
reflect current insurance terms. However, as climatological hazards including droughts are
likely to increase in severity and/or frequency in many parts of the world under climate
change scenarios, a view of the future climate is essential, particularly for the agricultural
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sector, which is highly vulnerable to adverse weather conditions. Using RCM-projected
climate data, this study offers a unique view into future risk and therefore provides a more
robust meteorological drought index that includes future drought risk. Further, RCM
projections prolong the time series that forms the basis for index development and therefore
limit basis risk in that longer series is more likely to include extreme events.

Conclusions

While index solutions are widely used to transfer natural disaster risks of public
infrastructure to (re)insurance and capital markets, only a few applications currently exist
for agricultural production assets. One of the key constraints to its wider use is the
requirement and difficulty to obtain consistent climate data and loss proxies that are essential
to identify and quantify extreme climate events, which will cause high payouts under weather
insurance structures. RCM-projected climate data provide the unique ability to access future
climate conditions including the frequency and severity of extreme droughts, which is
particularly important for agricultural production systems. A better understanding of the
future climate and risks will not only enable governments to better prepare for disasters but
should also lead to more risk-adequate insurance structures that reflect future risks, which in
turn should benefit all stakeholders and the wider society.

Due to its simplicity and its wide use by weather services and in climate research, the SPI
is suitable for weather index insurance where rainfall deficit (meteorological drought) is the
leading cause of agricultural production shortfalls. As the developed macro-level weather
index is based on precipitation deficit on a 0.5° spatial grid, regional drought events should be
accurately reflected in the aggregated weather index for Central Java. The methods of this
study have been developed for rice production in Central Java; however, they can be applied
to other Indonesian provinces that show a clear link between rainfall amounts and
agricultural production losses. With adaptations, the concepts can be used in other countries
where rainfall deficit alone explains most of the volatility in crop production.

The results of this study can be improved given that (1) historical weather station data are
more easily accessible, which will enhance the validation of the CRU climate data; (2) seasonal
rice production statistics are available for longer time periods, which will allow more robust
correlation analyses with SPIs; and (3) actual disaster assistance spending of the government
of Central Java is known and can be correlated to rice production shortfalls and the SPI time
series. Although highly computing intensive, RCM-based climate projections beyond 2040
will further improve the understanding of spatial and temporal changes in future drought
occurrences and allow the prolongation of the SPI time series beyond the 81 years of this
study. Although rainfall deficit (negative SPI6) is the main driver in the wet season rice

Historical period Projected period Combined period
Time Period 1960-2015 2016-2040 1960-2040
Duration (years) 56 25 81
Calculated Min Payout (US$m) 0.05 29.0 0.05
Calculated Max Payout (US$m) 495 83.3 833
Average Payout (US$m) 7.7 82 78
Total Payout (US$m) 4311 204.9 636.1
Pure Risk Premium Rate 1.48% 1.58% 1.51%
Pure Risk Premium (US$m) 7.70 8.20 7.85
Drought Frequency (event/year) 1/6.3 1/3.1 1/37
Correlation with Drought -0.71 —0.67 —0.68

Note(s): “Drought is defined through SPI6 of < —5

Regional
climate model
for drought
Insurance

Table 2.

Key parameters of the
weather index
insurance for different
time periods




production, the investigation of excess rainfall events (positive SPI6) could be of interest in
Central Java, based on which a weather index that covers drought and excessive rainfall
events can be developed.

Generally, the wider access of GCM and RCM outputs will enable the agricultural
insurance industry to better understand past extreme events in function of the expectation of
such events in future climates.
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Notes

1. The Representative Concentration Pathways (RCP) scenarios 8.5 are available at https://www.ipcc.
ch/pdf/assessment-report/ars/syr/AR5_SYR_FINAL_SPM.pdf (accessed January 2019)

2. The net radiative forcing scenarios are available at http://sedac.ipcc-data.org/ddc/ar5_scenario_
process/RCPs.html (accessed January 2019).

3. BMKG issues periodically drought bulletins that are available to government agencies include SPI
indices as one of the parameters, e.g. http://mddb.apec.org/Documents/2015/FMP/SEM1/15_fmp_
seml_020.pdf; http://www.droughtmanagement.info/literature/UNW-DPC_NDMP_Country_
Report_Indonesia_2014.pdf (accessed August 2018).
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